Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MuseCL: Predicting Urban Socioeconomic Indicators via Multi-Semantic Contrastive Learning (2407.09523v1)

Published 23 Jun 2024 in cs.CV, cs.AI, cs.CY, and cs.LG

Abstract: Predicting socioeconomic indicators within urban regions is crucial for fostering inclusivity, resilience, and sustainability in cities and human settlements. While pioneering studies have attempted to leverage multi-modal data for socioeconomic prediction, jointly exploring their underlying semantics remains a significant challenge. To address the gap, this paper introduces a Multi-Semantic Contrastive Learning (MuseCL) framework for fine-grained urban region profiling and socioeconomic prediction. Within this framework, we initiate the process by constructing contrastive sample pairs for street view and remote sensing images, capitalizing on the similarities in human mobility and Point of Interest (POI) distribution to derive semantic features from the visual modality. Additionally, we extract semantic insights from POI texts embedded within these regions, employing a pre-trained text encoder. To merge the acquired visual and textual features, we devise an innovative cross-modality-based attentional fusion module, which leverages a contrastive mechanism for integration. Experimental results across multiple cities and indicators consistently highlight the superiority of MuseCL, demonstrating an average improvement of 10% in $R2$ compared to various competitive baseline models. The code of this work is publicly available at https://github.com/XixianYong/MuseCL.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com

GitHub