Papers
Topics
Authors
Recent
2000 character limit reached

Machine Apophenia: The Kaleidoscopic Generation of Architectural Images (2407.09172v1)

Published 12 Jul 2024 in cs.AI and cs.CV

Abstract: This study investigates the application of generative artificial intelligence in architectural design. We present a novel methodology that combines multiple neural networks to create an unsupervised and unmoderated stream of unique architectural images. Our approach is grounded in the conceptual framework called machine apophenia. We hypothesize that neural networks, trained on diverse human-generated data, internalize aesthetic preferences and tend to produce coherent designs even from random inputs. The methodology involves an iterative process of image generation, description, and refinement, resulting in captioned architectural postcards automatically shared on several social media platforms. Evaluation and ablation studies show the improvement both in technical and aesthetic metrics of resulting images on each step.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.