Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP (2407.08917v1)

Published 12 Jul 2024 in cs.CC and cs.DS

Abstract: Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized complexity. PIH asserts that given as input a 2-CSP on $k$ variables and alphabet size $n$, it is W[1]-hard parameterized by $k$ to distinguish if the input is perfectly satisfiable or if every assignment to the input violates 1% of the constraints. An important implication of PIH is that it yields the tight parameterized inapproximability of the $k$-maxcoverage problem. In the $k$-maxcoverage problem, we are given as input a set system, a threshold $\tau>0$, and a parameter $k$ and the goal is to determine if there exist $k$ sets in the input whose union is at least $\tau$ fraction of the entire universe. PIH is known to imply that it is W[1]-hard parameterized by $k$ to distinguish if there are $k$ input sets whose union is at least $\tau$ fraction of the universe or if the union of every $k$ input sets is not much larger than $\tau\cdot (1-\frac{1}{e})$ fraction of the universe. In this work we present a gap preserving FPT reduction (in the reverse direction) from the $k$-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that approximating the $k$-maxcoverage problem to some constant factor is W[1]-hard implies PIH. In addition, we present a gap preserving FPT reduction from the $k$-median problem (in general metrics) to the $k$-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over classical gap preserving polynomial time reductions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.