Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DART: A Solution for Decentralized Federated Learning Model Robustness Analysis (2407.08652v1)

Published 11 Jul 2024 in cs.DC

Abstract: Federated Learning (FL) has emerged as a promising approach to address privacy concerns inherent in Machine Learning (ML) practices. However, conventional FL methods, particularly those following the Centralized FL (CFL) paradigm, utilize a central server for global aggregation, which exhibits limitations such as bottleneck and single point of failure. To address these issues, the Decentralized FL (DFL) paradigm has been proposed, which removes the client-server boundary and enables all participants to engage in model training and aggregation tasks. Nevertheless, as CFL, DFL remains vulnerable to adversarial attacks, notably poisoning attacks that undermine model performance. While existing research on model robustness has predominantly focused on CFL, there is a noteworthy gap in understanding the model robustness of the DFL paradigm. In this paper, a thorough review of poisoning attacks targeting the model robustness in DFL systems, as well as their corresponding countermeasures, are presented. Additionally, a solution called DART is proposed to evaluate the robustness of DFL models, which is implemented and integrated into a DFL platform. Through extensive experiments, this paper compares the behavior of CFL and DFL under diverse poisoning attacks, pinpointing key factors affecting attack spread and effectiveness within the DFL. It also evaluates the performance of different defense mechanisms and investigates whether defense mechanisms designed for CFL are compatible with DFL. The empirical results provide insights into research challenges and suggest ways to improve the robustness of DFL models for future research.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.