Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Real to Cloned Singer Identification (2407.08647v1)

Published 11 Jul 2024 in cs.SD, cs.IR, cs.LG, and eess.AS

Abstract: Cloned voices of popular singers sound increasingly realistic and have gained popularity over the past few years. They however pose a threat to the industry due to personality rights concerns. As such, methods to identify the original singer in synthetic voices are needed. In this paper, we investigate how singer identification methods could be used for such a task. We present three embedding models that are trained using a singer-level contrastive learning scheme, where positive pairs consist of segments with vocals from the same singers. These segments can be mixtures for the first model, vocals for the second, and both for the third. We demonstrate that all three models are highly capable of identifying real singers. However, their performance deteriorates when classifying cloned versions of singers in our evaluation set. This is especially true for models that use mixtures as an input. These findings highlight the need to understand the biases that exist within singer identification systems, and how they can influence the identification of voice deepfakes in music.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.