Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unveiling the Potential of BERTopic for Multilingual Fake News Analysis -- Use Case: Covid-19 (2407.08417v1)

Published 11 Jul 2024 in cs.LG

Abstract: Topic modeling is frequently being used for analysing large text corpora such as news articles or social media data. BERTopic, consisting of sentence embedding, dimension reduction, clustering, and topic extraction, is the newest and currently the SOTA topic modeling method. However, current topic modeling methods have room for improvement because, as unsupervised methods, they require careful tuning and selection of hyperparameters, e.g., for dimension reduction and clustering. This paper aims to analyse the technical application of BERTopic in practice. For this purpose, it compares and selects different methods and hyperparameters for each stage of BERTopic through density based clustering validation and six different topic coherence measures. Moreover, it also aims to analyse the results of topic modeling on real world data as a use case. For this purpose, the German fake news dataset (GermanFakeNCovid) on Covid-19 was created by us and in order to experiment with topic modeling in a multilingual (English and German) setting combined with the FakeCovid dataset. With the final results, we were able to determine thematic similarities between the United States and Germany. Whereas, distinguishing the topics of fake news from India proved to be more challenging.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets