Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved FPT Approximation for Non-metric TSP (2407.08392v1)

Published 11 Jul 2024 in cs.DS

Abstract: In the Traveling Salesperson Problem (TSP) we are given a list of locations and the distances between each pair of them. The goal is to find the shortest possible tour that visits each location exactly once and returns to the starting location. Inspired by the fact that general TSP cannot be approximated in polynomial time within any constant factor, while metric TSP admits a (slightly better than) $1.5$-approximation in polynomial time, Zhou, Li and Guo [Zhou et al., ISAAC '22] introduced a parameter that measures the distance of a given TSP instance from the metric case. They gave an FPT $3$-approximation algorithm parameterized by $k$, where $k$ is the number of triangles in which the edge costs violate the triangle inequality. In this paper, we design a $2.5$-approximation algorithm that runs in FPT time, improving the result of [Zhou et al., ISAAC '22].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.