Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved online load balancing with known makespan (2407.08376v1)

Published 11 Jul 2024 in cs.DS

Abstract: We break the barrier of $3/2$ for the problem of online load balancing with known makespan, also known as bin stretching. In this problem, $m$ identical machines and the optimal makespan are given. The load of a machine is the total size of all the jobs assigned to it and the makespan is the maximum load of all the machines. Jobs arrive online and the goal is to assign each job to a machine while staying within a small factor (the competitive ratio) of the optimal makespan. We present an algorithm that maintains a competitive ratio of $139/93<1.495$ for sufficiently large values of $m$, improving the previous bound of $3/2$. The value 3/2 represents a natural bound for this problem: as long as the online bins are of size at least $3/2$ of the offline bin, all items that fit at least two times in an offline bin have two nice properties. They fit three times in an online bin and a single such item can be packed together with an item of any size in an online bin. These properties are now both lost, which means that putting even one job on a wrong machine can leave some job unassigned at the end. It also makes it harder to determine good thresholds for the item types. This was one of the main technical issues in getting below $3/2$. The analysis consists of an intricate mixture of size and weight arguments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.