Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian process interpolation with conformal prediction: methods and comparative analysis (2407.08271v1)

Published 11 Jul 2024 in cs.LG, stat.CO, stat.ME, and stat.ML

Abstract: This article advocates the use of conformal prediction (CP) methods for Gaussian process (GP) interpolation to enhance the calibration of prediction intervals. We begin by illustrating that using a GP model with parameters selected by maximum likelihood often results in predictions that are not optimally calibrated. CP methods can adjust the prediction intervals, leading to better uncertainty quantification while maintaining the accuracy of the underlying GP model. We compare different CP variants and introduce a novel variant based on an asymmetric score. Our numerical experiments demonstrate the effectiveness of CP methods in improving calibration without compromising accuracy. This work aims to facilitate the adoption of CP methods in the GP community.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: