Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal sampling for least squares approximation with general dictionaries (2407.07814v2)

Published 10 Jul 2024 in math.NA and cs.NA

Abstract: We consider the problem of approximating an unknown function in a nonlinear model class from point evaluations. When obtaining these point evaluations is costly, minimising the required sample size becomes crucial. Recently, an increasing focus has been on employing adaptive sampling strategies to achieve this. These strategies are based on linear spaces related to the nonlinear model class, for which the optimal sampling measures are known. However, the resulting optimal sampling measures depend on an orthonormal basis of the linear space, which is known rarely. Consequently, sampling from these measures is challenging in practice. This manuscript presents a sampling strategy that iteratively refines an estimate of the optimal sampling measure by updating it based on previously drawn samples. This strategy can be performed offline and does not require evaluations of the sought function. We establish convergence and illustrate the practical performance through numerical experiments. Comparing the presented approach with standard Monte Carlo sampling demonstrates a significant reduction in the number of samples required to achieve a good estimation of an orthonormal basis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube