Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning (2407.07801v2)

Published 10 Jul 2024 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: In recent years, advancements in representation learning and LLMs have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub