Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Why should we ever automate moral decision making? (2407.07671v1)

Published 10 Jul 2024 in cs.AI

Abstract: While people generally trust AI to make decisions in various aspects of their lives, concerns arise when AI is involved in decisions with significant moral implications. The absence of a precise mathematical framework for moral reasoning intensifies these concerns, as ethics often defies simplistic mathematical models. Unlike fields such as logical reasoning, reasoning under uncertainty, and strategic decision-making, which have well-defined mathematical frameworks, moral reasoning lacks a broadly accepted framework. This absence raises questions about the confidence we can place in AI's moral decision-making capabilities. The environments in which AI systems are typically trained today seem insufficiently rich for such a system to learn ethics from scratch, and even if we had an appropriate environment, it is unclear how we might bring about such learning. An alternative approach involves AI learning from human moral decisions. This learning process can involve aggregating curated human judgments or demonstrations in specific domains, or leveraging a foundation model fed with a wide range of data. Still, concerns persist, given the imperfections in human moral decision making. Given this, why should we ever automate moral decision making -- is it not better to leave all moral decision making to humans? This paper lays out a number of reasons why we should expect AI systems to engage in decisions with a moral component, with brief discussions of the associated risks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: