Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MSC-LIO: An MSCKF-Based LiDAR-Inertial Odometry with Same-Plane Cluster Tracking (2407.07589v4)

Published 10 Jul 2024 in cs.RO

Abstract: The multi-state constraint Kalman filter (MSCKF) has been proven to be more efficient than graph optimization for visual-based odometry while with similar accuracy. However, it has not been adequately considered and studied for LiDAR-based odometry. In this paper, we propose a novel tightly-coupled LiDAR-inertial odometry based on the MSCKF framework, named MSC-LIO. An efficient LiDAR same-plane cluster (LSPC) tracking method, without explicit feature extraction, is present for frame-to-frame data associations. The tracked LSPC is used to build an LSPC measurement model that constructs multi-state constraints. Besides, we propose an effective point-velocity-based LiDAR-IMU time-delay (LITD) estimation method, which is derived from the proposed LSPC tracking method. To validate the effectiveness and robustness of the proposed method, we conducted extensive experiments on both public datasets and real-world environments. The results demonstrate that the proposed MSC-LIO yields higher accuracy and efficiency compared to the state-of-the-art methods. Ablation experiments indicate that the data-association efficiency is improved by nearly 3 times with the LSPC tracking, and the proposed LITD estimation method can effectively and accurately estimate the LITD. Besides, MSC-LIO was implemented on an edge device and demonstrated excellent real-time performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.