Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Instrumentation and Analysis of Native ML Pipelines via Logical Query Plans (2407.07560v1)

Published 10 Jul 2024 in cs.DB, cs.LG, and cs.SE

Abstract: Machine Learning (ML) is increasingly used to automate impactful decisions, which leads to concerns regarding their correctness, reliability, and fairness. We envision highly-automated software platforms to assist data scientists with developing, validating, monitoring, and analysing their ML pipelines. In contrast to existing work, our key idea is to extract "logical query plans" from ML pipeline code relying on popular libraries. Based on these plans, we automatically infer pipeline semantics and instrument and rewrite the ML pipelines to enable diverse use cases without requiring data scientists to manually annotate or rewrite their code. First, we developed such an abstract ML pipeline representation together with machinery to extract it from Python code. Next, we used this representation to efficiently instrument static ML pipelines and apply provenance tracking, which enables lightweight screening for common data preparation issues. Finally, we built machinery to automatically rewrite ML pipelines to perform more advanced what-if analyses and proposed using multi-query optimisation for the resulting workloads. In future work, we aim to interactively assist data scientists as they work on their ML pipelines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com