Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Beyond Fixed Length: Bucket Pre-training is All You Need (2407.07495v2)

Published 10 Jul 2024 in cs.CL

Abstract: LLMs have demonstrated exceptional performance across various tasks, with pre-training stage serving as the cornerstone of their capabilities. However, the conventional fixed-length data composition strategy for pre-training presents several practical challenges. When using shorter sequences, documents are often truncated, potentially leading to information loss and affecting the model's ability to capture long-range dependencies. Conversely, longer sequences require concatenation of multiple documents, which can introduce noise and affect the natural document boundaries and semantic coherence as well as require substantial computational overhead. To address these challenges, we first establish three quantitative metrics for evaluating data composition quality: padding ratio, truncation ratio, and concatenation ratio. Building upon these metrics, we propose a novel multi-bucket data composition method that transcends the fixed-length paradigm. Our approach adaptively organizes training data to achieve optimal composition quality as measured by the proposed metrics, offering a more flexible and efficient approach for pre-training. We conduct extensive experiments and the results demonstrate that our proposed method significantly enhances both the efficiency and effectiveness of LLM pre-training.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.