Semi-Supervised Model-Free Bayesian State Estimation from Compressed Measurements (2407.07368v6)
Abstract: We consider data-driven Bayesian state estimation from compressed measurements (BSCM) of a model-free process. The dimension of the temporal measurement vector is lower than that of the temporal state vector to be estimated, leading to an under-determined inverse problem. The underlying dynamical model of the state's evolution is unknown for a 'model-free process.' Hence, it is difficult to use traditional model-driven methods, for example, Kalman and particle filters. Instead, we consider data-driven methods. We experimentally show that two existing unsupervised learning-based data-driven methods fail to address the BSCM problem in a model-free process. The methods are -- data-driven nonlinear state estimation (DANSE) and deep Markov model (DMM). While DANSE provides good predictive/forecasting performance to model the temporal measurement data as a time series, its unsupervised learning lacks suitable regularization for tackling the BSCM task. We then propose a semi-supervised learning approach and develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE. In SemiDANSE, we use a large amount of unlabelled data along with a limited amount of labelled data, i.e., pairwise measurement-and-state data, which provides the desired regularization. Using three benchmark dynamical systems, we empirically show that the data-driven SemiDANSE provides competitive state estimation performance for BSCM using a handful of different measurement systems, against a hybrid method called KalmanNet and two model-driven methods (extended Kalman filter and unscented Kalman filter) that know the dynamical models exactly.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.