Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Complete Causal Explanation with Expert Knowledge (2407.07338v2)

Published 10 Jul 2024 in stat.ML, cs.DM, cs.LG, and stat.ME

Abstract: We study the problem of restricting a Markov equivalence class of maximal ancestral graphs (MAGs) to only those MAGs that contain certain edge marks, which we refer to as expert knowledge. Such a restriction of the Markov equivalence class can be uniquely represented by a restricted essential ancestral graph. Our contributions are several-fold. First, we prove certain properties for the entire Markov equivalence class including a conjecture from Ali et al. (2009). Second, we present several new sound graphical orientation rules for adding expert knowledge to an essential ancestral graph. We also show that some orientation rules of Zhang (2008b) are not needed for restricting the Markov equivalence class with expert knowledge. Third, we provide an algorithm for including this expert knowledge and show that in certain settings the output of our algorithm is a restricted essential ancestral graph. Finally, outside of the specified settings, we provide an algorithm for checking whether a graph is a restricted essential graph and discuss its runtime. This work can be seen as a generalization of Meek (1995) to settings which allow for latent confounding.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.