Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random Reed-Solomon Codes Achieve the Half-Singleton Bound for Insertions and Deletions over Linear-Sized Alphabets (2407.07299v1)

Published 10 Jul 2024 in cs.IT, cs.DS, math.CO, and math.IT

Abstract: In this paper, we prove that with high probability, random Reed-Solomon codes approach the half-Singleton bound - the optimal rate versus error tradeoff for linear insdel codes - with linear-sized alphabets. More precisely, we prove that, for any $\epsilon>0$ and positive integers $n$ and $k$, with high probability, random Reed--Solomon codes of length $n$ and dimension $k$ can correct $(1-\varepsilon)n-2k+1$ adversarial insdel errors over alphabets of size $n+2{\mathsf{poly}(1/\varepsilon)}k$. This significantly improves upon the alphabet size demonstrated in the work of Con, Shpilka, and Tamo (IEEE TIT, 2023), who showed the existence of Reed--Solomon codes with exponential alphabet size $\widetilde O\left(\binom{n}{2k-1}2\right)$ precisely achieving the half-Singleton bound. Our methods are inspired by recent works on list-decoding Reed-Solomon codes. Brakensiek-Gopi-Makam (STOC 2023) showed that random Reed-Solomon codes are list-decodable up to capacity with exponential-sized alphabets, and Guo-Zhang (FOCS 2023) and Alrabiah-Guruswami-Li (STOC 2024) improved the alphabet-size to linear. We achieve a similar alphabet-size reduction by similarly establishing strong bounds on the probability that certain random rectangular matrices are full rank. To accomplish this in our insdel context, our proof combines the random matrix techniques from list-decoding with structural properties of Longest Common Subsequences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.