Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differentially Private Algorithms for Graph Cuts: A Shifting Mechanism Approach and More (2407.06911v5)

Published 9 Jul 2024 in cs.CR and cs.DS

Abstract: In this paper, we address the challenge of differential privacy in the context of graph cuts, specifically focusing on the multiway cut and the minimum $k$-cut. We introduce edge-differentially private algorithms that achieve nearly optimal performance for these problems. Motivated by multiway cut, we propose the shifting mechanism, a general framework for private combinatorial optimization problems. This framework allows us to develop an efficient private algorithm with a multiplicative approximation ratio that matches the state-of-the-art non-private algorithm, improving over previous private algorithms that have provably worse multiplicative loss. We then provide a tight information-theoretic lower bound on the additive error, demonstrating that for constant $k$, our algorithm is optimal in terms of the privacy cost. The shifting mechanism also allows us to design private algorithm for the multicut and max-cut problems, with runtimes determined by the best non-private algorithms for these tasks. For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts to get the first private algorithm with optimal additive error of $O(k\log n)$ (for a fixed privacy parameter). We also establish an information-theoretic lower bound that matches this additive error. Furthermore, we provide an efficient private algorithm even for non-constant $k$, including a polynomial-time 2-approximation with an additive error of $\tilde{O}(k{1.5})$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: