Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Pretrained Large Language Model with Prompt Engineering to Answer Biomedical Questions (2407.06779v1)

Published 9 Jul 2024 in cs.CL

Abstract: Our team participated in the BioASQ 2024 Task12b and Synergy tasks to build a system that can answer biomedical questions by retrieving relevant articles and snippets from the PubMed database and generating exact and ideal answers. We propose a two-level information retrieval and question-answering system based on pre-trained LLMs (LLM), focused on LLM prompt engineering and response post-processing. We construct prompts with in-context few-shot examples and utilize post-processing techniques like resampling and malformed response detection. We compare the performance of various pre-trained LLM models on this challenge, including Mixtral, OpenAI GPT and Llama2. Our best-performing system achieved 0.14 MAP score on document retrieval, 0.05 MAP score on snippet retrieval, 0.96 F1 score for yes/no questions, 0.38 MRR score for factoid questions and 0.50 F1 score for list questions in Task 12b.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.