Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Lossless Deamortization for Dynamic Greedy Set Cover (2407.06431v1)

Published 8 Jul 2024 in cs.DS

Abstract: The dynamic set cover problem has been subject to growing research attention in recent years. In this problem, we are given as input a dynamic universe of at most $n$ elements and a fixed collection of $m$ sets, where each element appears in a most $f$ sets and the cost of each set is in $[1/C, 1]$, and the goal is to efficiently maintain an approximate minimum set cover under element updates. Two algorithms that dynamize the classic greedy algorithm are known, providing $O(\log n)$ and $((1+\epsilon)\ln n)$-approximation with amortized update times $O(f \log n)$ and $O(\frac{f \log n}{\epsilon5})$, respectively [GKKP (STOC'17); SU (STOC'23)]. The question of whether one can get approximation $O(\log n)$ (or even worse) with low worst-case update time has remained open -- only the naive $O(f \cdot n)$ time bound is known, even for unweighted instances. In this work we devise the first amortized greedy algorithm that is amenable to an efficient deamortization, and also develop a lossless deamortization approach suitable for the set cover problem, the combination of which yields a $((1+\epsilon)\ln n)$-approximation algorithm with a worst-case update time of $O(\frac{f\log n}{\epsilon2})$. Our worst-case time bound -- the first to break the naive $O(f \cdot n)$ bound -- matches the previous best amortized bound, and actually improves its $\epsilon$-dependence. Further, to demonstrate the applicability of our deamortization approach, we employ it, in conjunction with the primal-dual amortized algorithm of [BHN (FOCS'19)], to obtain a $((1+\epsilon)f)$-approximation algorithm with a worst-case update time of $O(\frac{f\log n}{\epsilon2})$, improving over the previous best bound of $O(\frac{f \cdot \log2(Cn)}{\epsilon3})$ [BHNW (SODA'21)]. Finally, as direct implications of our results for set cover, we [...]

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com