Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FairDiff: Fair Segmentation with Point-Image Diffusion (2407.06250v1)

Published 8 Jul 2024 in cs.CV

Abstract: Fairness is an important topic for medical image analysis, driven by the challenge of unbalanced training data among diverse target groups and the societal demand for equitable medical quality. In response to this issue, our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images. However, in terms of generating synthetic images, previous works either lack paired labels or fail to precisely control the boundaries of synthetic images to be aligned with those labels. To address this, we formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk minimization and fairness maximization. On the implementation side, our solution features an innovative Point-Image Diffusion architecture, which leverages 3D point clouds for improved control over mask boundaries through a point-mask-image synthesis pipeline. This method outperforms significantly existing techniques in synthesizing scanning laser ophthalmoscopy (SLO) fundus images. By combining synthetic data with real data during the training phase using a proposed Equal Scale approach, our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models. Code is available at https://github.com/wenyi-li/FairDiff.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.