Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

More Distinctively Black and Feminine Faces Lead to Increased Stereotyping in Vision-Language Models (2407.06194v2)

Published 22 May 2024 in cs.CV, cs.AI, and cs.CL

Abstract: Vision LLMs (VLMs), exemplified by GPT-4V, adeptly integrate text and vision modalities. This integration enhances LLMs' ability to mimic human perception, allowing them to process image inputs. Despite VLMs' advanced capabilities, however, there is a concern that VLMs inherit biases of both modalities in ways that make biases more pervasive and difficult to mitigate. Our study explores how VLMs perpetuate homogeneity bias and trait associations with regards to race and gender. When prompted to write stories based on images of human faces, GPT-4V describes subordinate racial and gender groups with greater homogeneity than dominant groups and relies on distinct, yet generally positive, stereotypes. Importantly, VLM stereotyping is driven by visual cues rather than group membership alone such that faces that are rated as more prototypically Black and feminine are subject to greater stereotyping. These findings suggest that VLMs may associate subtle visual cues related to racial and gender groups with stereotypes in ways that could be challenging to mitigate. We explore the underlying reasons behind this behavior and discuss its implications and emphasize the importance of addressing these biases as VLMs come to mirror human perception.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube