Papers
Topics
Authors
Recent
2000 character limit reached

Parabolic Approximation & Relaxation for MINLP (2407.06143v2)

Published 8 Jul 2024 in math.OC

Abstract: We propose an approach based on quadratic approximations for solving general Mixed-Integer Nonlinear Programming (MINLP) problems. Specifically, our approach entails the global approximation of the epigraphs of constraint functions by means of paraboloids, which are polynomials of degree two with univariate quadratic terms, and relies on a Lipschitz property only. These approximations are then integrated into the original problem. To this end, we introduce a novel approach to compute globally valid epigraph approximations by paraboloids via a Mixed-Integer Linear Programming (MIP) model. We emphasize the possibility of performing such approximations a-priori and providing them in form of a lookup table, and then present several ways of leveraging the approximations to tackle the original problem. We provide the necessary theoretical background and conduct computational experiments on instances of the MINLPLib. As a result, this approach significantly accelerates the solution process of MINLP problems, particularly those involving many trigonometric or few exponential functions. In general, we highlight that the proposed technique is able to exploit advances in Mixed-Integer Quadratically-Constrained Programming (MIQCP) to solve MINLP problems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.