Parabolic Approximation & Relaxation for MINLP (2407.06143v2)
Abstract: We propose an approach based on quadratic approximations for solving general Mixed-Integer Nonlinear Programming (MINLP) problems. Specifically, our approach entails the global approximation of the epigraphs of constraint functions by means of paraboloids, which are polynomials of degree two with univariate quadratic terms, and relies on a Lipschitz property only. These approximations are then integrated into the original problem. To this end, we introduce a novel approach to compute globally valid epigraph approximations by paraboloids via a Mixed-Integer Linear Programming (MIP) model. We emphasize the possibility of performing such approximations a-priori and providing them in form of a lookup table, and then present several ways of leveraging the approximations to tackle the original problem. We provide the necessary theoretical background and conduct computational experiments on instances of the MINLPLib. As a result, this approach significantly accelerates the solution process of MINLP problems, particularly those involving many trigonometric or few exponential functions. In general, we highlight that the proposed technique is able to exploit advances in Mixed-Integer Quadratically-Constrained Programming (MIQCP) to solve MINLP problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.