Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Scaling Analog Photonic Accelerators for Byte-Size, Integer General Matrix Multiply (GEMM) Kernels (2407.06134v1)

Published 8 Jul 2024 in cs.AR, cs.ET, and cs.PF

Abstract: Deep Neural Networks (DNNs) predominantly rely on General Matrix Multiply (GEMM) kernels, which are often accelerated using specialized hardware architectures. Recently, analog photonic GEMM accelerators have emerged as a promising alternative, offering vastly superior speed and energy efficiency compared to traditional electronic accelerators. However, these photonic cannot support wider than 4-bit integer operands due to their inherent trade-offs between analog dynamic range and parallelism. This is often inadequate for DNN training as at least 8-bit wide operands are deemed necessary to prevent significant accuracy drops. To address these limitations, we introduce a scalable photonic GEMM accelerator named SPOGA. SPOGA utilizes enhanced features such as analog summation of homodyne optical signals and in-transduction positional weighting of operands. By employing an extended optical-analog dataflow that minimizes overheads associated with bit-sliced integer arithmetic, SPOGA supports byte-size integer GEMM kernels, achieving significant improvements in throughput, latency, and energy efficiency. Specifically, SPOGA demonstrates up to 14.4$\times$, 2$\times$, and 28.5$\times$ improvements in frames-per-second (FPS), FPS/Watt, and FPS/Watt/mm$2$ respectively, compared to existing state-of-the-art photonic solutions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com