Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scaling Analog Photonic Accelerators for Byte-Size, Integer General Matrix Multiply (GEMM) Kernels (2407.06134v1)

Published 8 Jul 2024 in cs.AR, cs.ET, and cs.PF

Abstract: Deep Neural Networks (DNNs) predominantly rely on General Matrix Multiply (GEMM) kernels, which are often accelerated using specialized hardware architectures. Recently, analog photonic GEMM accelerators have emerged as a promising alternative, offering vastly superior speed and energy efficiency compared to traditional electronic accelerators. However, these photonic cannot support wider than 4-bit integer operands due to their inherent trade-offs between analog dynamic range and parallelism. This is often inadequate for DNN training as at least 8-bit wide operands are deemed necessary to prevent significant accuracy drops. To address these limitations, we introduce a scalable photonic GEMM accelerator named SPOGA. SPOGA utilizes enhanced features such as analog summation of homodyne optical signals and in-transduction positional weighting of operands. By employing an extended optical-analog dataflow that minimizes overheads associated with bit-sliced integer arithmetic, SPOGA supports byte-size integer GEMM kernels, achieving significant improvements in throughput, latency, and energy efficiency. Specifically, SPOGA demonstrates up to 14.4$\times$, 2$\times$, and 28.5$\times$ improvements in frames-per-second (FPS), FPS/Watt, and FPS/Watt/mm$2$ respectively, compared to existing state-of-the-art photonic solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: