Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Revisit the Arimoto-Blahut algorithm: New Analysis with Approximation (2407.06013v5)

Published 8 Jul 2024 in cs.IT and math.IT

Abstract: By the seminal paper of Claude Shannon \cite{Shannon48}, the computation of the capacity of a discrete memoryless channel has been considered as one of the most important and fundamental problems in Information Theory. Nearly 50 years ago, Arimoto and Blahut independently proposed identical algorithms to solve this problem in their seminal papers \cite{Arimoto1972AnAF, Blahut1972ComputationOC}. The Arimoto-Blahut algorithm was proven to converge to the capacity of the channel as $t \to \infty$ with the convergence rate upper bounded by $O\left(\log(m)/t\right)$, where $m$ is the size of the input distribution, and being inverse exponential when there is a unique solution in the interior of the input probability simplex \cite{Arimoto1972AnAF}. Recently it was proved, in \cite{Nakagawa2020AnalysisOT}, that the convergence rate is at worst inverse linear $O(1/t)$ in some specific cases. In this paper, we revisit this fundamental algorithm looking at the rate of convergence to the capacity and the time complexity, given $m,n$, where $n$ is size of the output of the channel, focusing on the approximation of the capacity. We prove that the rate of convergence to an $\varepsilon$-optimal solution, for any sufficiently small constant $\varepsilon > 0$, is inverse exponential $O\left(\log(m)/ct\right)$, for a constant $c > 1$ and $O\left(\log \left(\log (m)/\varepsilon\right)\right)$ at most iterations, implying $O\left(m n\log \left(\log (m)/\varepsilon\right)\right)$ total complexity of the algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com