Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automated Computational Energy Minimization of ML Algorithms using Constrained Bayesian Optimization (2407.05788v1)

Published 8 Jul 2024 in cs.LG and cs.AI

Abstract: Bayesian optimization (BO) is an efficient framework for optimization of black-box objectives when function evaluations are costly and gradient information is not easily accessible. BO has been successfully applied to automate the task of hyperparameter optimization (HPO) in ML models with the primary objective of optimizing predictive performance on held-out data. In recent years, however, with ever-growing model sizes, the energy cost associated with model training has become an important factor for ML applications. Here we evaluate Constrained Bayesian Optimization (CBO) with the primary objective of minimizing energy consumption and subject to the constraint that the generalization performance is above some threshold. We evaluate our approach on regression and classification tasks and demonstrate that CBO achieves lower energy consumption without compromising the predictive performance of ML models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube