Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Short-term Object Interaction Anticipation with Disentangled Object Detection @ Ego4D Short Term Object Interaction Anticipation Challenge (2407.05713v1)

Published 8 Jul 2024 in cs.CV and cs.AI

Abstract: Short-term object interaction anticipation is an important task in egocentric video analysis, including precise predictions of future interactions and their timings as well as the categories and positions of the involved active objects. To alleviate the complexity of this task, our proposed method, SOIA-DOD, effectively decompose it into 1) detecting active object and 2) classifying interaction and predicting their timing. Our method first detects all potential active objects in the last frame of egocentric video by fine-tuning a pre-trained YOLOv9. Then, we combine these potential active objects as query with transformer encoder, thereby identifying the most promising next active object and predicting its future interaction and time-to-contact. Experimental results demonstrate that our method outperforms state-of-the-art models on the challenge test set, achieving the best performance in predicting next active objects and their interactions. Finally, our proposed ranked the third overall top-5 mAP when including time-to-contact predictions. The source code is available at https://github.com/KeenyJin/SOIA-DOD.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.