Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sub-SA: Strengthen In-context Learning via Submodular Selective Annotation (2407.05693v2)

Published 8 Jul 2024 in cs.LG, cs.AI, and cs.CL

Abstract: In-context learning (ICL) leverages in-context examples as prompts for the predictions of LLMs. These prompts play a crucial role in achieving strong performance. However, the selection of suitable prompts from a large pool of labeled examples often entails significant annotation costs. To address this challenge, we propose Sub-SA (Submodular Selective Annotation), a submodule-based selective annotation method. The aim of Sub-SA is to reduce annotation costs while improving the quality of in-context examples and minimizing the time consumption of the selection process. In Sub-SA, we design a submodular function that facilitates effective subset selection for annotation and demonstrates the characteristics of monotonically and submodularity from the theoretical perspective. Specifically, we propose RPR (Reward and Penalty Regularization) to better balance the diversity and representativeness of the unlabeled dataset attributed to a reward term and a penalty term, respectively. Consequently, the selection for annotations can be effectively addressed with a simple yet effective greedy search algorithm based on the submodular function. Finally, we apply the similarity prompt retrieval to get the examples for ICL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube