Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

$R^2$-Guard: Robust Reasoning Enabled LLM Guardrail via Knowledge-Enhanced Logical Reasoning (2407.05557v1)

Published 8 Jul 2024 in cs.AI

Abstract: As LLMs become increasingly prevalent across various applications, it is critical to establish safety guardrails to moderate input/output content of LLMs. Existing guardrail models treat various safety categories independently and fail to explicitly capture the intercorrelations among them. This has led to limitations such as ineffectiveness due to inadequate training on long-tail data from correlated safety categories, susceptibility to jailbreaking attacks, and inflexibility regarding new safety categories. To address these limitations, we propose $R2$-Guard, a robust reasoning enabled LLM guardrail via knowledge-enhanced logical reasoning. Specifically, $R2$-Guard comprises two parts: data-driven category-specific learning and reasoning components. The data-driven guardrail models provide unsafety probabilities of moderated content on different safety categories. We then encode safety knowledge among different categories as first-order logical rules and embed them into a probabilistic graphic model (PGM) based reasoning component. The unsafety probabilities of different categories from data-driven guardrail models are sent to the reasoning component for final inference. We employ two types of PGMs: Markov logic networks (MLNs) and probabilistic circuits (PCs), and optimize PCs to achieve precision-efficiency balance via improved graph structure. To further perform stress tests for guardrail models, we employ a pairwise construction method to construct a new safety benchmark TwinSafety, which features principled categories. We demonstrate the effectiveness of $R2$-Guard by comparisons with eight strong guardrail models on six safety benchmarks, and demonstrate the robustness of $R2$-Guard against four SOTA jailbreaking attacks. $R2$-Guard significantly surpasses SOTA method LlamaGuard by 30.2% on ToxicChat and by 59.5% against jailbreaking attacks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: