Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Enhancing Computer Programming Education with LLMs: A Study on Effective Prompt Engineering for Python Code Generation (2407.05437v1)

Published 7 Jul 2024 in cs.AI

Abstract: LLMs and prompt engineering hold significant potential for advancing computer programming education through personalized instruction. This paper explores this potential by investigating three critical research questions: the systematic categorization of prompt engineering strategies tailored to diverse educational needs, the empowerment of LLMs to solve complex problems beyond their inherent capabilities, and the establishment of a robust framework for evaluating and implementing these strategies. Our methodology involves categorizing programming questions based on educational requirements, applying various prompt engineering strategies, and assessing the effectiveness of LLM-generated responses. Experiments with GPT-4, GPT-4o, Llama3-8b, and Mixtral-8x7b models on datasets such as LeetCode and USACO reveal that GPT-4o consistently outperforms others, particularly with the "multi-step" prompt strategy. The results show that tailored prompt strategies significantly enhance LLM performance, with specific strategies recommended for foundational learning, competition preparation, and advanced problem-solving. This study underscores the crucial role of prompt engineering in maximizing the educational benefits of LLMs. By systematically categorizing and testing these strategies, we provide a comprehensive framework for both educators and students to optimize LLM-based learning experiences. Future research should focus on refining these strategies and addressing current LLM limitations to further enhance educational outcomes in computer programming instruction.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com