Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fréchet Distance in Subquadratic Time (2407.05231v2)

Published 7 Jul 2024 in cs.CG and cs.DS

Abstract: Let $m$ and $n$ be the numbers of vertices of two polygonal curves in $\mathbb{R}d$ for any fixed $d$ such that $m \leq n$. Since it was known in 1995 how to compute the Fr\'{e}chet distance of these two curves in $O(mn\log (mn))$ time, it has been an open problem whether the running time can be reduced to $o(n2)$ when $m = \Omega(n)$. In the mean time, several well-known quadratic time barriers in computational geometry have been overcome: 3SUM, some 3SUM-hard problems, and the computation of some distances between two polygonal curves, including the discrete Fr\'{e}chet distance, the dynamic time warping distance, and the geometric edit distance. It is curious that the quadratic time barrier for Fr\'{e}chet distance still stands. We present an algorithm to compute the Fr\'echet distance in $O(mn(\log\log n){2+\mu}\log n/\log{1+\mu} m)$ expected time for some constant $\mu \in (0,1)$. It is the first algorithm that returns the Fr\'{e}chet distance in $o(mn)$ time when $m = \Omega(n{\varepsilon})$ for any fixed $\varepsilon \in (0,1]$.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube