Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fréchet Distance in Subquadratic Time (2407.05231v2)

Published 7 Jul 2024 in cs.CG and cs.DS

Abstract: Let $m$ and $n$ be the numbers of vertices of two polygonal curves in $\mathbb{R}d$ for any fixed $d$ such that $m \leq n$. Since it was known in 1995 how to compute the Fr\'{e}chet distance of these two curves in $O(mn\log (mn))$ time, it has been an open problem whether the running time can be reduced to $o(n2)$ when $m = \Omega(n)$. In the mean time, several well-known quadratic time barriers in computational geometry have been overcome: 3SUM, some 3SUM-hard problems, and the computation of some distances between two polygonal curves, including the discrete Fr\'{e}chet distance, the dynamic time warping distance, and the geometric edit distance. It is curious that the quadratic time barrier for Fr\'{e}chet distance still stands. We present an algorithm to compute the Fr\'echet distance in $O(mn(\log\log n){2+\mu}\log n/\log{1+\mu} m)$ expected time for some constant $\mu \in (0,1)$. It is the first algorithm that returns the Fr\'{e}chet distance in $o(mn)$ time when $m = \Omega(n{\varepsilon})$ for any fixed $\varepsilon \in (0,1]$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.