Papers
Topics
Authors
Recent
2000 character limit reached

PeaPOD: Personalized Prompt Distillation for Generative Recommendation (2407.05033v2)

Published 6 Jul 2024 in cs.IR

Abstract: Recently, researchers have investigated the capabilities of LLMs for generative recommender systems. Existing LLM-based recommender models are trained by adding user and item IDs to a discrete prompt template. However, the disconnect between IDs and natural language makes it difficult for the LLM to learn the relationship between users. To address this issue, we propose a PErsonAlized PrOmpt Distillation (PeaPOD) approach, to distill user preferences as personalized soft prompts. Considering the complexities of user preferences in the real world, we maintain a shared set of learnable prompts that are dynamically weighted based on the user's interests to construct the user-personalized prompt in a compositional manner. Experimental results on three real-world datasets demonstrate the effectiveness of our PeaPOD model on sequential recommendation, top-n recommendation, and explanation generation tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.