Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Beyond Perplexity: Multi-dimensional Safety Evaluation of LLM Compression (2407.04965v3)

Published 6 Jul 2024 in cs.CL

Abstract: Increasingly, model compression techniques enable LLMs to be deployed in real-world applications. As a result of this momentum towards local deployment, compressed LLMs will interact with a large population. Prior work on compression typically prioritize preserving perplexity, which is directly analogous to training loss. The impact of compression method on other critical aspects of model behavior\, -- \,particularly safety\, -- \,requires systematic assessment. To this end, we investigate the impact of model compression along four dimensions: (1) degeneration harm, i.e., bias and toxicity in generation; (2) representational harm, i.e., biases in discriminative tasks; (3) dialect bias; and(4) LLMing and downstream task performance. We examine a wide spectrum of LLM compression techniques, including unstructured pruning, semi-structured pruning, and quantization. Our analysis reveals that compression can lead to unexpected consequences. Although compression may unintentionally alleviate LLMs' degeneration harm, it can still exacerbate representational harm. Furthermore, increasing compression produces a divergent impact on different protected groups. Finally, different compression methods have drastically different safety impacts: for example, quantization mostly preserves bias while pruning degrades quickly. Our findings underscore the importance of integrating safety assessments into the development of compressed LLMs to ensure their reliability across real-world applications.\footnote{Our implementation and results are available here: \url{https://github.com/zhichaoxu-shufe/Beyond-Perplexity-Compression-Safety-Eval}}

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com