Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training (2407.04963v1)

Published 6 Jul 2024 in cs.CV

Abstract: Understanding emotions from diverse contexts has received widespread attention in computer vision communities. The core philosophy of Context-Aware Emotion Recognition (CAER) is to provide valuable semantic cues for recognizing the emotions of target persons by leveraging rich contextual information. Current approaches invariably focus on designing sophisticated structures to extract perceptually critical representations from contexts. Nevertheless, a long-neglected dilemma is that a severe context bias in existing datasets results in an unbalanced distribution of emotional states among different contexts, causing biased visual representation learning. From a causal demystification perspective, the harmful bias is identified as a confounder that misleads existing models to learn spurious correlations based on likelihood estimation, limiting the models' performance. To address the issue, we embrace causal inference to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task via a customized causal graph. Subsequently, we present a Contextual Causal Intervention Module (CCIM) to de-confound the confounder, which is built upon backdoor adjustment theory to facilitate seeking approximate causal effects during model training. As a plug-and-play component, CCIM can easily integrate with existing approaches and bring significant improvements. Systematic experiments on three datasets demonstrate the effectiveness of our CCIM.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com