Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algorithmic Language Models with Neurally Compiled Libraries (2407.04899v2)

Published 6 Jul 2024 in cs.AI, cs.CL, and cs.PL

Abstract: Important tasks such as reasoning and planning are fundamentally algorithmic, meaning that solving them robustly requires acquiring true reasoning or planning algorithms, rather than shortcuts. LLMs lack true algorithmic ability primarily because of the limitations of neural network optimization algorithms, their optimization data and optimization objective, but also due to architectural inexpressivity. To solve this, our paper proposes augmenting LLMs with a library of fundamental operations and sophisticated differentiable programs, so that common algorithms do not need to be learned from scratch. We add memory, registers, basic operations, and adaptive recurrence to a transformer architecture built on LLaMA3. Then, we define a method for directly compiling algorithms into a differentiable starting library, which is used natively and propagates gradients for optimization. In this preliminary study, we explore the feasability of augmenting LLaMA3 with a differentiable computer, for instance by fine-tuning small transformers on simple algorithmic tasks with variable computational depth.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 7 tweets and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper: