Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convex Approximation of Two-Layer ReLU Networks for Hidden State Differential Privacy (2407.04884v3)

Published 5 Jul 2024 in cs.LG and cs.CR

Abstract: The hidden state threat model of differential privacy (DP) assumes that the adversary has access only to the final trained ML model, without seeing intermediate states during training. However, the current privacy analyses under this model are restricted to convex optimization problems, reducing their applicability to multi-layer neural networks, which are essential in modern deep learning applications. Notably, the most successful applications of the hidden state privacy analyses in classification tasks have only been for logistic regression models. We demonstrate that it is possible to privately train convex problems with privacy-utility trade-offs comparable to those of 2-layer ReLU networks trained with DP stochastic gradient descent (DP-SGD). This is achieved through a stochastic approximation of a dual formulation of the ReLU minimization problem, resulting in a strongly convex problem. This enables the use of existing hidden state privacy analyses and provides accurate privacy bounds also for the noisy cyclic mini-batch gradient descent (NoisyCGD) method with fixed disjoint mini-batches. Empirical results on benchmark classification tasks demonstrate that NoisyCGD can achieve privacy-utility trade-offs on par with DP-SGD applied to 2-layer ReLU networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: