Flip Dynamics for Sampling Colorings: Improving $(11/6-ε)$ Using a Simple Metric (2407.04870v2)
Abstract: We present improved bounds for randomly sampling $k$-colorings of graphs with maximum degree $\Delta$; our results hold without any further assumptions on the graph. The Glauber dynamics is a simple single-site update Markov chain. Jerrum (1995) proved an optimal $O(n\log{n})$ mixing time bound for Glauber dynamics whenever $k>2\Delta$ where $\Delta$ is the maximum degree of the input graph. This bound was improved by Vigoda (1999) to $k > (11/6)\Delta$ using a "flip" dynamics which recolors (small) maximal 2-colored components in each step. Vigoda's result was the best known for general graphs for 20 years until Chen et al. (2019) established optimal mixing of the flip dynamics for $k > (11/6 - \epsilon ) \Delta$ where $\epsilon \approx 10{-5}$. We present the first substantial improvement over these results. We prove an optimal mixing time bound of $O(n\log{n})$ for the flip dynamics when $k \geq 1.809 \Delta$. This yields, through recent spectral independence results, an optimal $O(n\log{n})$ mixing time for the Glauber dynamics for the same range of $k/\Delta$ when $\Delta=O(1)$. Our proof utilizes path coupling with a simple weighted Hamming distance for "unblocked" neighbors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.