Papers
Topics
Authors
Recent
2000 character limit reached

Linear causal disentanglement via higher-order cumulants (2407.04605v1)

Published 5 Jul 2024 in stat.ML, cs.LG, math.AG, math.CO, math.ST, and stat.TH

Abstract: Linear causal disentanglement is a recent method in causal representation learning to describe a collection of observed variables via latent variables with causal dependencies between them. It can be viewed as a generalization of both independent component analysis and linear structural equation models. We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts, each given by an intervention on a latent variable. We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions, generalizing previous work to allow more latent than observed variables. We give a constructive proof that computes parameters via a coupled tensor decomposition. For soft interventions, we find the equivalence class of latent graphs and parameters that are consistent with observed data, via the study of a system of polynomial equations. Our results hold assuming the existence of non-zero higher-order cumulants, which implies non-Gaussianity of variables.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.