Papers
Topics
Authors
Recent
2000 character limit reached

Testing learning hypotheses using neural networks by manipulating learning data (2407.04593v1)

Published 5 Jul 2024 in cs.CL

Abstract: Although passivization is productive in English, it is not completely general -- some exceptions exist (e.g. *One hour was lasted by the meeting). How do English speakers learn these exceptions to an otherwise general pattern? Using neural network LLMs as theories of acquisition, we explore the sources of indirect evidence that a learner can leverage to learn whether a verb can passivize. We first characterize English speakers' judgments of exceptions to the passive, confirming that speakers find some verbs more passivizable than others. We then show that a neural network LLM can learn restrictions to the passive that are similar to those displayed by humans, suggesting that evidence for these exceptions is available in the linguistic input. We test the causal role of two hypotheses for how the LLM learns these restrictions by training models on modified training corpora, which we create by altering the existing training corpora to remove features of the input implicated by each hypothesis. We find that while the frequency with which a verb appears in the passive significantly affects its passivizability, the semantics of the verb does not. This study highlight the utility of altering a LLM's training data for answering questions where complete control over a learner's input is vital.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.