Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graph Reinforcement Learning for Power Grids: A Comprehensive Survey (2407.04522v3)

Published 5 Jul 2024 in cs.LG

Abstract: The rise of renewable energy and distributed generation requires new approaches to overcome the limitations of traditional methods. In this context, Graph Neural Networks are promising due to their ability to learn from graph-structured data. Combined with Reinforcement Learning, they can serve as control approaches to determine remedial network actions. This review analyses how Graph Reinforcement Learning (GRL) can improve representation learning and decision making in power grid use cases. Although GRL has demonstrated adaptability to unpredictable events and noisy data, it is primarily at a proof-of-concept stage. We highlight open challenges and limitations with respect to real-world applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.