Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

From Audio Encoders to Piano Judges: Benchmarking Performance Understanding for Solo Piano (2407.04518v2)

Published 5 Jul 2024 in eess.AS

Abstract: Our study investigates an approach for understanding musical performances through the lens of audio encoding models, focusing on the domain of solo Western classical piano music. Compared to composition-level attribute understanding such as key or genre, we identify a knowledge gap in performance-level music understanding, and address three critical tasks: expertise ranking, difficulty estimation, and piano technique detection, introducing a comprehensive Pianism-Labelling Dataset (PLD) for this purpose. We leverage pre-trained audio encoders, specifically Jukebox, Audio-MAE, MERT, and DAC, demonstrating varied capabilities in tackling downstream tasks, to explore whether domain-specific fine-tuning enhances capability in capturing performance nuances. Our best approach achieved 93.6\% accuracy in expertise ranking, 33.7\% in difficulty estimation, and 46.7\% in technique detection, with Audio-MAE as the overall most effective encoder. Finally, we conducted a case study on Chopin Piano Competition data using trained models for expertise ranking, which highlights the challenge of accurately assessing top-tier performances.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 39 likes.

Upgrade to Pro to view all of the tweets about this paper: