Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Statistical reduced order modelling for the parametric Helmholtz equation (2407.04438v1)

Published 5 Jul 2024 in cs.CE

Abstract: Predictive modeling involving simulation and sensor data at the same time, is a growing challenge in computational science. Even with large-scale finite element models, a mismatch to the sensor data often remains, which can be attributed to different sources of uncertainty. For such a scenario, the statistical finite element method (statFEM) can be used to condition a simulated field on given sensor data. This yields a posterior solution which resembles the data much better and additionally provides consistent estimates of uncertainty, including model misspecification. For frequency or parameter dependent problems, occurring, e.g. in acoustics or electromagnetism, solving the full order model at the frequency grid and conditioning it on data quickly results in a prohibitive computational cost. In this case, the introduction of a surrogate in form of a reduced order model yields much smaller systems of equations. In this paper, we propose a reduced order statFEM framework relying on Krylov-based moment matching. We introduce a data model which explicitly includes the bias induced by the reduced approximation, which is estimated by an inexpensive error indicator. The results of the new statistical reduced order method are compared to the standard statFEM procedure applied to a ROM prior, i.e. without explicitly accounting for the reduced order bias. The proposed method yields better accuracy and faster convergence throughout a given frequency range for different numerical examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com