Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tackling Data Corruption in Offline Reinforcement Learning via Sequence Modeling (2407.04285v4)

Published 5 Jul 2024 in cs.LG and cs.AI

Abstract: Learning policy from offline datasets through offline reinforcement learning (RL) holds promise for scaling data-driven decision-making while avoiding unsafe and costly online interactions. However, real-world data collected from sensors or humans often contains noise and errors, posing a significant challenge for existing offline RL methods, particularly when the real-world data is limited. Our study reveals that prior research focusing on adapting predominant offline RL methods based on temporal difference learning still falls short under data corruption when the dataset is limited. In contrast, we discover that vanilla sequence modeling methods, such as Decision Transformer, exhibit robustness against data corruption, even without specialized modifications. To unlock the full potential of sequence modeling, we propose Robust Decision Rransformer (RDT) by incorporating three simple yet effective robust techniques: embedding dropout to improve the model's robustness against erroneous inputs, Gaussian weighted learning to mitigate the effects of corrupted labels, and iterative data correction to eliminate corrupted data from the source. Extensive experiments on MuJoCo, Kitchen, and Adroit tasks demonstrate RDT's superior performance under various data corruption scenarios compared to prior methods. Furthermore, RDT exhibits remarkable robustness in a more challenging setting that combines training-time data corruption with test-time observation perturbations. These results highlight the potential of sequence modeling for learning from noisy or corrupted offline datasets, thereby promoting the reliable application of offline RL in real-world scenarios. Our code is available at https://github.com/jiawei415/RobustDecisionTransformer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.