Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploration of Class Center for Fine-Grained Visual Classification (2407.04243v1)

Published 5 Jul 2024 in cs.CV

Abstract: Different from large-scale classification tasks, fine-grained visual classification is a challenging task due to two critical problems: 1) evident intra-class variances and subtle inter-class differences, and 2) overfitting owing to fewer training samples in datasets. Most existing methods extract key features to reduce intra-class variances, but pay no attention to subtle inter-class differences in fine-grained visual classification. To address this issue, we propose a loss function named exploration of class center, which consists of a multiple class-center constraint and a class-center label generation. This loss function fully utilizes the information of the class center from the perspective of features and labels. From the feature perspective, the multiple class-center constraint pulls samples closer to the target class center, and pushes samples away from the most similar nontarget class center. Thus, the constraint reduces intra-class variances and enlarges inter-class differences. From the label perspective, the class-center label generation utilizes classcenter distributions to generate soft labels to alleviate overfitting. Our method can be easily integrated with existing fine-grained visual classification approaches as a loss function, to further boost excellent performance with only slight training costs. Extensive experiments are conducted to demonstrate consistent improvements achieved by our method on four widely-used fine-grained visual classification datasets. In particular, our method achieves state-of-the-art performance on the FGVC-Aircraft and CUB-200-2011 datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.