Papers
Topics
Authors
Recent
2000 character limit reached

A Multi-Step Minimax Q-learning Algorithm for Two-Player Zero-Sum Markov Games (2407.04240v2)

Published 5 Jul 2024 in cs.LG

Abstract: An interesting iterative procedure is proposed to solve a two-player zero-sum Markov games. Under suitable assumption, the boundedness of the proposed iterates is obtained theoretically. Using results from stochastic approximation, the almost sure convergence of the proposed two-step minimax Q-learning is obtained theoretically. More specifically, the proposed algorithm converges to the game theoretic optimal value with probability one, when the model information is not known. Numerical simulation authenticate that the proposed algorithm is effective and easy to implement.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.