Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Batch Transformer: Look for Attention in Batch (2407.04218v1)

Published 5 Jul 2024 in cs.CV and cs.AI

Abstract: Facial expression recognition (FER) has received considerable attention in computer vision, with "in-the-wild" environments such as human-computer interaction. However, FER images contain uncertainties such as occlusion, low resolution, pose variation, illumination variation, and subjectivity, which includes some expressions that do not match the target label. Consequently, little information is obtained from a noisy single image and it is not trusted. This could significantly degrade the performance of the FER task. To address this issue, we propose a batch transformer (BT), which consists of the proposed class batch attention (CBA) module, to prevent overfitting in noisy data and extract trustworthy information by training on features reflected from several images in a batch, rather than information from a single image. We also propose multi-level attention (MLA) to prevent overfitting the specific features by capturing correlations between each level. In this paper, we present a batch transformer network (BTN) that combines the above proposals. Experimental results on various FER benchmark datasets show that the proposed BTN consistently outperforms the state-ofthe-art in FER datasets. Representative results demonstrate the promise of the proposed BTN for FER.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.