Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning and representation learner: A short theoretical note (2407.04189v2)

Published 4 Jul 2024 in cs.LG, math.ST, and stat.TH

Abstract: Meta-learning, or "learning to learn," is a subfield of machine learning where the goal is to develop models and algorithms that can learn from various tasks and improve their learning process over time. Unlike traditional machine learning methods focusing on learning a specific task, meta-learning aims to leverage experience from previous tasks to enhance future learning. This approach is particularly beneficial in scenarios where the available data for a new task is limited, but there exists abundant data from related tasks. By extracting and utilizing the underlying structure and patterns across these tasks, meta-learning algorithms can achieve faster convergence and better performance with fewer data. The following notes are mainly inspired from \cite{vanschoren2018meta}, \cite{baxter2019learning}, and \cite{maurer2005algorithmic}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)

Summary

We haven't generated a summary for this paper yet.