Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Securing Multi-turn Conversational Language Models From Distributed Backdoor Triggers (2407.04151v2)

Published 4 Jul 2024 in cs.CL, cs.AI, cs.CR, and cs.LG

Abstract: LLMs have acquired the ability to handle longer context lengths and understand nuances in text, expanding their dialogue capabilities beyond a single utterance. A popular user-facing application of LLMs is the multi-turn chat setting. Though longer chat memory and better understanding may seemingly benefit users, our paper exposes a vulnerability that leverages the multi-turn feature and strong learning ability of LLMs to harm the end-user: the backdoor. We demonstrate that LLMs can capture the combinational backdoor representation. Only upon presentation of triggers together does the backdoor activate. We also verify empirically that this representation is invariant to the position of the trigger utterance. Subsequently, inserting a single extra token into two utterances of 5%of the data can cause over 99% Attack Success Rate (ASR). Our results with 3 triggers demonstrate that this framework is generalizable, compatible with any trigger in an adversary's toolbox in a plug-and-play manner. Defending the backdoor can be challenging in the chat setting because of the large input and output space. Our analysis indicates that the distributed backdoor exacerbates the current challenges by polynomially increasing the dimension of the attacked input space. Canonical textual defenses like ONION and BKI leverage auxiliary model forward passes over individual tokens, scaling exponentially with the input sequence length and struggling to maintain computational feasibility. To this end, we propose a decoding time defense - decayed contrastive decoding - that scales linearly with assistant response sequence length and reduces the backdoor to as low as 0.35%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.