Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quantum Convolutional Neural Network for Phase Recognition in Two Dimensions (2407.04114v1)

Published 4 Jul 2024 in quant-ph and cond-mat.str-el

Abstract: Quantum convolutional neural networks (QCNNs) are quantum circuits for recognizing quantum phases of matter at low sampling cost and have been designed for condensed matter systems in one dimension. Here we construct a QCNN that can perform phase recognition in two dimensions and correctly identify the phase transition from a Toric Code phase with $\mathbb{Z}_2$-topological order to the paramagnetic phase. The network also exhibits a noise threshold up to which the topological order is recognized. Our work generalizes phase recognition with QCNNs to higher spatial dimensions and intrinsic topological order, where exploration and characterization via classical numerics become challenging.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com